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ABSTRACT

This paper provides the conceptual foundation for stochastic-duels

and then develops a modetit extension to more realistic combat situations.

Simple stochastic models for the fundamental duel and the classical duel

are reviewed. A modest extension is developed for the theory of multi-

ple duels: when all firing times are continuous random variables, an

", expression for the probability of winning such a duel is derived by

using the theory of continuous-time Markov chains.

Accession For

NTIS GPA I
PT , T!.2

S /or

NT s .I..

k3

............ .



.. . . i . . . . . -. . .. . . . . . . . .. . . . .. . . .. ... -. _ ... . . . .. i , 
-

TABLE OF CONTENTS

I. INTRODUCTION --------------------------------------------- 6

II. SOME BASIC STOCHASTIC-DUEL MODELS---------------------------8

A. The Fundamental Duel ----------------------------------- 8

B. The Classical Duel ------------------------------------ 14

III. AN EXTENSION TO MULTIPLE FIRES ----------------------------- 16

A. DISCRETE FIRING TIME ---------------------------------- 16

1. Development of Results for Fundamental Duel Model 16

2. Development of Results for Multiple Duels Model 18

B. CONTINUOUS FIRING TIME -------------------------------- 23

IV. NUMERICAL EXAMPLES --------------------------------------- 30

A. THE FUNDAMENTAL DUEL ---------------------------------- 30

B. THE CLASSICAL DUEL ------------------------------------ 32

C. AN EXTENSION TO MULTIPLE DUEL -------------------------- 34

V. SUGGESTED FUTURE WORK ------------------------------------- 39

VI. FINAL REMARKS -------------------------------------------- 41

LIST OF REFERENCES --------------------------------------------- 42

INITIAL DISTRIBUTION LIST --------------------------------------- 43

4

...................



LIST OF FIGURES

1 The Situations of Duel --------------------------------------- 19

2 Combat Situations ------------------------------------------- 24

3 The State of Duel ------------------------------------------ 25

4 The Relationship of PA and pB When rA = rB ------------------- 31

5 The Relationship of PA and PB When rA = 2r, ------------------ 31

6 The Relationship of rAPA and rBP -  32

7 The Relationship of PA and PB When a = b --------------------- 34

8 The Relationship Between PA and PB When a = 2b --------------- 35

9 The Relationship Between PA and p8 When a = b --------------- 36

5

t-



I. INTRODUCTION

In the nineteenth century, Von Clausewitz [Ref. 5] remarked that

"war is nothing but a duel on a large scale." Subsequently, in the

twentieth century, the theory of stochastic-duels was developed by C. J.

-. Ancker [Refs. 2, 3, and 4] and others to mathematically look at such

duels in order to have a mathematical basis for studying modern combat.

- Thus, the theory of stochastic duels considers combat at a microscopic

level (individual fires opposing each other), whereas at the other

extreme the Lanchester theory of warfare considers it at a macroscopic

level (large groups of homogeneous fires opposing each other). This

thesis will review the conceptual foundation of the theory of stochastic

duels (in particular, one-on-one duels) and then develop a modest

extension to more realistic combat situation (namely, two-on-one duels).

Additionally, the author hopes that his exposition about this

material concerning one-on-one duels makes the concept more accessible

to the professional military officers. Thus this expository material

strives to be simple (but yet complete) and self-contained (and hence

full details will be supplied to the reader). It also sets the stage

for the extension to multiple fires (i.e., the two-on-one duel).

Let us now consider the nature of the theory of stochastic duels in

more detail. It is concerned with the microscopic features of combat

such as kill probabilities of individual rounds, times between rounds

fired, ammunition limitations, etc. In the theory of stochastic duels,

* 'two duellists (usually denoted as A and B) fire at each other until one

6



or the other has been killed. The times between the firing of suc-

cessive rounds by each duellist are frequently taken to be randon

variables, pairwise independent. The simplest case is that in which

there is a single duellist on each side (i.e., one-on-one duel).

There are two basic cases for stochastic duels that have been dis-

tinguished in the literature: 1) the fundamental duel, and 2) the

classical duel. In the fundamental duel, the two duellists have Un-

limited ammunition and each starts with an unloaded weapon. Specific

solutions have been derived for a general firing-time distribution anj

also for exponentially-distributed firing times. Later in this thesis

we will give a simple development of the exponential firing time results.

In the classical duel, each duellist starts with a loaded weapon, they

fire simultaneously at the beginning of the duel, and then they proceed

as in the fundamental duel. When the firing time is discrete, the

solution for the stochastic duel has been derived by using a special

technique [Ref. 3]. When the firing time is continuous, the solut~ci

for the stochastic duel is derived by using the theory of continuous-

time Markov chains. In Chapter IV, a numerical example is considerej

and corresponding parametric results are graphically presented.

.
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II. SOME BASIC STOCHASTIC-DUEL MODELS

In this chapter we will consider some simple (but yet basis) sto-

chastic-duel models for: 1) the fundamental duel, and 2) the classical

. duel. In the fundamental duel, the duellists each start with an un-

loaded weapon, load their weapons, and then fire at each other until one

of them is finally killed. In the classical duel, they both start with

* loaded weapons, fire their first rounds simultaneously, and then proceed

as in the fundamental duel. In this chapter, specific solutions are

derived for both the fundamental duel and also the classical duel for

the special case of exponential firing times (which is of fundamental

importance for understanding future enhancements).

A. THE FUNDAMENTAL DUEL

In the fundamental duel, two duellists, A and B, start with unloaded

weapons and then fire at each other until one is killed. A's firing

time (the time between rounds) is a random variable with a known prob-

ability density, fA(t). B's firing time is similarly characterized by

the density, fB(t). Successive firing times are selected from fAt) and

f 8 (t), independently and at random. Each time A fires, he has a fixed

probability PA of killing B. We will denote the probability that B is

not killed as qA and hence PA +  = . Similarly denoted as PB' with

its complement being similarly defined (i.e., PB + qB = 1). After the

starting signal, each contestant loads his weapon, aims, and then fires

his first round. In other words, in the fundamental duel the duellists

8
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start with unloaded weapons. Both (A and B) have unlimited supplies of

ammunition that, among other things, makes a kill by one of them an

ultimate certainty. A wins if he is the one to first score a kill. The

probability of this will be denoted as P(A), and p(A) + p(B) = 1, where

p(B) denotes the probability that B wins.

1. Development of Results for Fundamental-Duel Model

In this section we develop an expression for the probability

that Combatant A wins a "fundamental duel" against Combatant B, denoted

as p(A), in the case in which the firing times are exponentially distri-

buted. Our final results for p(A) is given by equation (15) below.

In order to develop an expression for the probability that A wins

the duel, we consider the combatants to be decoupled, i.e., each com-

batant fires at a passive target (one that does not return fire). Let

kA(t) denote the probability density for the time for A to kill his

passive target and KAt) denote the corresponding cumulative distribu-

"' tion function, i.e.,

KA(t) = ks(S) ds
0

We similarly define kB(t) and KB(t), i.e.

ft
IN KB(t) = f kB(s) ds

0

Then in order for A to win the duel he must kill his target before B

kills B's target. In other words

9



P(A) = Prob [TA < TB], (1)

Where TA denotes the time [the random variable corresponding to kAt)]

- and similarly for TB [Ref. 6].

t
p(A) = f 1 - KA(s)} d KB(S) (2).A B

0

or

p(A) =/ f { - KA(s)} d kB(s) ds (2)

0

The above expression holds in general, but we still must develop expres-

sion kAt) and kB(t) based on our model. In other words, if we assume

that, for example, we know the distributions of firing times and know

the corresponding single-shot kill probabilities, we must combine these

into a time-to-kill distribution.

Thus, we assume that A's firing time (i.e., the times between

rounds) are exponentially and identically distributed, with common

probability density as fA(t). Thus

fA(t) = rAe-rA
t

where rA denotes the firing rate of A. If we assume that the probabil-

ity that A kills his target with any one round is consistant for all

rounds and denote this probability as pA, then

Prob [nth round kills = (3n-).o target P q A(3)

10



where q= 1-PA Thus,

Prb~ A takes time between t nth rounds
and t+At to kill target kills target

n=1

A fires nth rounds
Prb~ between t and t+At()

now

Prb~ A fires tith rounds ~ rb~ A has firedPrb between t and t+At Prb (n-i) rounds by t

Prb~ A fires one more
6round fronm t to t+At

then

Prb~ A fires nth rounds (r At)nler t r 5

between t and t+At (n-i) e

or

Prb~ A fires nth rounds A r t
between t and t+At 0 (-1), eAA6



Since (Ref. 1]

n-i
A has fired (rAt) rAt (7)Probe t(7

(n-i) rounds by t (n-l~i

and

Prob [ A fires one round (8)between t and t+At I = rA t

Substituting (3) and (6) into (4), we obtain

r ntn-I
Prob [A takes time between n-i1 A r tt and t+At to kill target ] PA (n-1), eAAt

n-i

=rAPA e •~ At > (q~rA"~ i 9(n-i),(

n=1

or

A takes time between t -PArAtProb and t+At to kill target = PArA e

12



Thus

k A~t) =PA rA e AA

and

KAMt e 'Prt(12)

Similarly,

pr *t (14)KB(t) eBB

KP(t) e ~ r (15)

PA rA (15)B

which is our final result.

13
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B. THE CLASSICAL DUEL

In contrast to the fundamental duel, two duellists, A and B, start

with loaded weapons, fire their first rounds simultaneously, and then

proceed as in the fundamental duel. In order to develop an expression

for the probability that A wins a "classical duel" against Contestant B,

denoted as P(A), in the case in which the firing time are exponentially

distributed. The final solution p(A) is given by equation (21) below.

A kills B on B does not kill A
ithe 1st round on the 1st round

Prob [Neither is killed A wins the

Nete is iledb Prob (1ubeqen6de
on the 1st round subsequent duel

now

Prob [ A kills B on
P-.b the 1st round PA (17)

Prob [ B does not Kill Aon the 1st round = qB (18)

Prob [ Neither is killed
on the 1st round =

A wins the PArA (20)
PoEsubsequent duel = P(A)f = A B

.1

iii 14



- where P(A)f: the result of the fundamental duel substituting (10), (18).

* (19), and (20) into (16), we find

PA q (p~rB r A)
P(A) = +rA p~r (21)

which is our final result. But in the classical duel, the following

case will happen, i.e., Contestant A and Contestant B will be killed on

the first round. Therefore

P(A) + P(B) 1

thus

P(A) + P(B) + P(AB) = 1

where p(AB): the probability that both are killed on the first round.

P(AB) = 1 - P(A) - P(B) = pAPB (22)

15
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III. AN EXTENSION TO MULTIPLE FIRES

A. DISCRETE FIRING TIME

In a discrete firing time, two duellists, A and B, start with un-

limited ammunition, fire at each other with fixed kill probabilities PA

of killing B. Similarly denoted as pB of killing A. They start with

unloaded weapons and fire at fixed intervals a and b respectively. This

is similar to a situation in which each duellist is armed with an auto-

matic weapon.

1. Development of Results for Fundamental-Duel Model

. In order to develop an expression for the probability that A

- -7 wins the fundamental-duel, we will assume that a and b (fixed firing

interval) are rational numbers if a and b can be reduced to a/I where a

and are relatively prime integers. And we define

n ...... r a np + r (23)

where n is an integer and r is the remainder.

The total probability of A's total success on the jth rounds

[Ref. 3), i.e.

A's total success ,. first j-lth Kill on the
on the jth round P round fail jth rounds

r.,, .- j=1

p B is falling on (24)
his first K round

. 16



where K j

then

p A's total success ()q k
on the jth round (qA) (PA) (qB) (25)

j=1

or

"'A's total success p qln j qjn+[(j+l)((2)]
on the jth round ] A=  (26)

j=0

let

0j+1) (.1) =x [I

where [x.]: largest integer equal to or less than the number x.

Assume

[x + kp] = [x. + Kr] = Ex.] + K (27)
j r y (7

thus,

n
S A's total success PA =B _____ I q n+[x I

P on the jth round P q a" l1qA ~ j=j

17



__ A_ j 1 n + 201 1 n() 1- -

(1-qAPqa q A qB

~ A j=J 0-
(P~A qn + qA q n+ [xj]  q q 2 q 2n+ [x 2] + '1  q -'r

(1-q Pq B 8 ~+qq A3 B.. A ~ q ~ B~f 3) q
PA [2S) + +q~

= [1 Ref. 3]
• :"(I-q A qB

(28)

where n = [2] , r = a - nP , and [x.] = [(j+1) E]

Similarly

B [8s total success PB K [(K+1) (]
on the jth round 1(1-q AqBa) a A

K=O

which is our final results for the fundamental duel as the equation

(28).

2. Development of Results for Multiple-Duels Model

In this section we develop an expression for the probability

that Contestant A wins "multiple-duels" against Contestant B. In this

duel, there are two contestants on the A's side and one contestant on the

B side as shown in Figure 1.

18
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Figure 1. The Situations of Duel

Each time A (A,, A2) fires, A has a fixed probability PA of killing

B. We will denote the probability that B is not killed as qA, and hence

PA + qA= 1. Similarly denoted as PB' with its complement being simi-

larly defined (i.e., pB + q8 = 1). Both (A and B) have unlimited ammu-

nitions. If the B contestant kills an A, (or A2) he immediately shifts

* his fire to the remaining A. In this situation, the probability that

the side "A" can win is the following:

p [The side "A" side kills B and
"A" wins both A, and A2 survive ]

"A" side kills B and one "A" (A1 or A2)
are to be killed and only one A survivor

19



• .thus

t [ u ivd = [A , or A2 or both kill B) p(B fails to kill)

p {on j-1 rounds no kills) p [A, or A2 or both kill B on jth round)

j=

p {B fail to jth round)

= ( • (- qA2) qB = (1 2 q (30)
,.(q.. .= (I - q1A " )

j=1

and

00

P [one A (A, or A2 ) survive p (no kill on j-1 round)

j=l

(p (B kill A, or A2 and A fail to B) Pf(A)

f.. + p (B kill one A and A kill B))

20



thus

one A (A, or ( 2  2. qA A
"'"P[A 2 ) survive ]q =  B 8 PAf(A

j=l

%.ID

" (q 2  qB)Jl" PB ( -q 2) (31)
iJul

where Pf(A) is the results of a fundamental duel in which a=b (fixed

firing time).

Thus,

Pf(A) PA G [from the equation (28)] (32)-" f(A q ( A  o11)

Substituting equation (32) into equation (31), we find that:

TAh e = p Both A, and One A (A, orwins A2 survive P A2) survive

2 2PA (1 + qA PB "qA " q9)
2(32):. (1- A qB) (1 q qA2

21



Similarly,

The side V 2 qBj-1q 2P "B" wins = q PB " • Pf(B) (33)

j=1

where Pf(B) is the results of the fundamental-duel in which a=b.

Therefore,

qq1.pB2 •A3

The side] = A(34)
"B" win (1 - qA qB) (1 - q 2  qB )

Let us denote P(AB) the probability of draw.

Then,

P(AB) = p (no kills on j-1 round) p (B kill one A)

j=1

p (A does not kill B) p(one A and B have)
duel of draw

= ( q)jl (P (q Pf(AB) (35)

j=1

22



where Pf(AB) is the result of the fundamental duels with a=b.

-PA PB qA qB -~~P f( A B )  = -q ( 3 6 )

;q. A B

But when a=b, Pf(AB) = A qB (37)

Substituting equation (37) into equation (35)

2 2' PA q A2 P

P(AB) = (38)
( qqB) ( q 2  q B)

which is our final solution as the equation (32) and equation (34).

B. CONTINUOUS FIRING TIME

In this duel, two duellists, A and B, start with unloaded weapons

and then fire at random. But B's sides has two weapon systems and A's

sides has only one weapon system. A's firing time is a random variable

with a known probability density, fA(t). B's firing time is similarly

characterized by the density, fB(t). Successive firing times are

selected from each density independently. We will denote r the time

between round fired (i.e., rA for A system and r8 for B systems) and the

23
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firing interval between rounds is independent. Both systems has un-

limited ammunition and fire each other with fixed kill probability PA

for A system and pB for B system as shown in Figure 2.

x 1 BX

W x~1(t)' PB' X

y(t), PA' XA

*2 r
A APA
* =rW• B =rBPB

x2 (t)' PB' XB

Figure 2. Combat Situations
4,

If we assume that y(t) and x(t) are the state of each weapon system at

time t, then

= 1 : A contestant was not killed
0 : A contestant killed

and

x1 (t) 1 B (B1 or B2 ) contestant was not killed
or = { : B (B, or B2 ) killed.

x2(t)

24



Let us consider the state of duel in Figure 3.

x2 (t)

(0,1 ............- B (1,1,0)

a5 x

(0 M

2
" "(1,1,1I)

(o,1,1)

0 - x(t
a6  al (1,0,0)

a8
E ( 0,0,1) a7  F (1,0,1)
E* 

M Starting Point
at t = 0

y(t)-* i: Transition Rate

(where i=1,2,...)

Figure 3. The State of Duel

where points (A), (B), and (C) are the point of B's winning and only

point (E) is the point of A's winning. During the At, the transition

rates are the following:

25



(1) P [y hit x2 , x1 miss y and x2 miss y]

S( XA At) • (1-lBAt) • (1-\BAt)

= X- t BAt 2  ,AB2 t3x = 'At  x- a + X x At

B A a A"A

therefore

At
Transition rate a, = -At A

(2) P [y hit xj, x2 miss y and x, miss y] = AT

Similarly, Transition rate 2 = XA

(3) P [x1 hit y, x2 miss y and y miss x1] = (NBAt) (l-XBat) (l-At

= BAt

Transition rate a3 = XB

(4) P Ix2 hit y, x, miss y and y miss x2] = XBAt

Transition rate a4 = XB

26



(5) P CX2 hit y, and y mis X2 1 = (X8At) (lA A t)

Transition rate as =AB

~ (6) P (y hit X2 and X2 Miss Y1 = ( XAAt) (1-X8~at)

Transition rate as = s

(7) P [y hit x, and x, miss y] =(At)(l-ABz~t)

Transition rate U7 = AA

(8) P [x, hit y and y miss x1] = (X 8At) (1-AArt)

Transition rate as

If we assume that Pi (i =1, 2 ........ 8) are the transition pro-

bability, P(A) and P(B) are the following:

P(A) P2  P6 +PI P7  (39)

* and

*P(B) P3  P2  PS+PI PS (40)

27



Where P, oi

a__ _ _ _ _ _ _ _ A

""2P Ta
1.. Whraz =  0z+ 2 + a{3 + a04) khA + I ;A + x B + X B

a XA +XB

:P2 - l +a 2 +-1 4

2A +A +XB +XB

therefore P 1 P2 + P3 =1

K (as + 6 ) = AB + A

P6  a A
(as + ai6 ) B +  VA

P7 = (a7 +a 8 ) = 
+
AB

( 7  + a ) 'TA + X B

I.

therefore

P(A) =P 2 PS PI P7 -2+ (L..X AB)(4()

\XA+2X8~7A k +AA+A d AkB (1

28



Similarly

P(B) =P 3 +P 2 *Ps P1  Ps 1 -P(A)

=(AA vB) ( + B + (VA A )(4A XB)

(42)

Which is the final results as the equation (41).

29



i IV. NUMERICAL EXAMPLE

A. THE FUNDAMENTAL DUEL

Two duellists, A and B, start with unloaded weapons and then fire at

each other until one is killed. A's firing time (the time between

rounds =rA is 5 rounds per minute. B's firing time (rB is also 5

folownq

A B

PA~~~~ ~ 0.0fklln..W 6wlXeoe5 h rbaiiytatBi o

killed ~~ 0.5: .,an ec A + BSmlry eoe sp

But A's winningtchancesean beence ias heinae of(ie an/o kill)

Frmteaodtteprobability thincreases.yFromthelequations(15)

pP r

•A A

0.30

Btwo'sduinnings chane car beihanloddai raepofsade fire atl

::: eprabilty (PA)i nreis. Fromled equairing tie th5im)btwe

-:runs= A ) is5 roud p r (43) 'sfrn tm r )  sas

i rounds per miute. EachPtime A fires,) hehs1iedpoablt

" iPA 06 o kllig . W wll enoe he roabiit tht i3no



The following graphs represent the various cases.

CASE 1: rA = rB

. : -"PB
0.5=0.5

1.0 P(A=.
iL !0.5 P(A)=0.7

0.5 1.0 PA

Figure 4. The Relationship of PA and PB When rA =rB

CASE 2: rA = 2rB

PB P(A)=0.2 P(A)=0.3

1.0, /P(A)=0.5

/ /, P(A)=0.7

05P(A) 
0.9

0.5 1.0

Figure 5. The Relationship of PA and pB When rA 2rB
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If A's rate of fire (rA) is increased (rA = 2 rB), the contour are

rotated count clockwise around the origin.

CASE 3: rBPB = rAPA P(A) -1]

rBPB P(A)=0. /P(A)=0.3

1.0
"0P(A)=0.7

0.5

P(A)=0.9

0.5 1.0 r.! rBPB

Figure 6. The Relationship of rAPA and rBPB

From Figure 6, A's winning chances (p(A)) are enhanced as his rate of

fire (rA) and/or kill probability (PA) increases.

B. THE CLASSICAL DUEL

In the classical duel, two duellists, A and B, start with loaded

weapons, fire their first rounds simultaneously, and then proceed as in

the fundamental duel. Each time A fires, he has a fixed probability

PA = 0.6 of killing B. Similarly denoted as pB = 0.6 of killing A. A's

firing time is 5 rounds per minutes and B's firing time is also 5 rounds

per minute.
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Therefore, P(A) can be expressed: P(A) PA q B (Pf(A)) by the

equation (16) where Pf(A) is the result of the fundamental duel. By the

equation (21),

P(A q B~ (PB rB r rA)
P(A) PA rA + PBr B

= 0.6X0.4 (0.6X5 + 5)
0.6X5 +- 0.6X5

L = 0.32

Similarly,

P(B) 0.32

and the probability that both are killed on the first round:

P(AB) =1 -P(A) -P(B) or P(AB) P APB

-0.36

where P(AB) is the probability that both are killed in the first round.
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C. AN EXTENSION TO MULTIPLE FIRES

First, we will consider fundamental duel case when firing time is

discrete. In a discrete firing time, two duellists, A and B, start with

unlimited ammunition, fire at each other with fixed kill probabilities

PA 0.6 of killing B. Similarly denoted as PB = 0.6 of killing A.

They start with unloaded weapons and fire at fixed interval a and b

respectively. Let's consider a various case of a and b.

1. a b 1

From the equation (23) 1, n 1, r 0

therefore,

n
":.•A's total success qP jq +Ex

"P on the jth round ]
"j=O

P= 0.285

1.0

P(A)=0.1

0.8
P(A)=0.3

0.6

P(A)=0.5

0.4
P(A)=0.7

0.2
P(A)=0.9

0.2 0.4 0.6 0.8 1.0

* Figure 7. The Relationship Between PA and PB When a = b
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2. a -10, b -5

From the equation (23) ~ 2, n 2,r 0

similarly,

P A's total success =0.1

on the jth round

1.0

0.8

0.6. P(A) 0.1

0.4 P(A)=0.3

P(A)=0.5

0.2 P(A)=0.7

P(A)=0.9

0.2 0.4 0.6 0.8 1.0 PA

Figure 8. The Relationship Between PA and p. When a =2b
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3. a =5, b =5
I A's total success

Similarly, P [ on tot runs ] = 0.743on the jth rounds

PB P(A)-O.1

1.0 03 0.5 07 0.9

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

Figure 9. The Relationship Between PA and PB When a = b

Secondly, we will consider multiple-duel when firing time is dis-

crete. In this duel, there are two combatants on the A's side and one

combatant on the B's side as in Figure 1. A (A1 , A2 ) has a fixed

probability PA = 0.6 of killing B. Similarly denoted is PB = 0.6 of

killing A. From the mentioned data, we can get the probability that A's

system will win. From the equations (32 and (33),
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2 2
PA(1 + q APB - q2 qB)... P[ The side "A" win (1 q qAqB )  (I q qA-qB)

- 0.93

and

2 3

P E The side "B" wins ] = A
(1 AqB ) A

= 0.026

Similarly, from the equation (38)

Draw of both
: [sides (AB) ] = 0.044

therefore P(A) + P(B) + P(AB) = 1

Finally we will consider multiple-duel when firing time is continu-

ous. A's firing time is a random variable with a known probability

density, fAt). The time between rounds fired is random variable having

exponential distribution with rA = 5 round per minute for "A", rB = 5

rounds per minute for "B". The kill probability of "A" sides is PA = 0.6,

and p. = 0.6. Therefore, from equations (41) and (42) we can get P(A)

and P(B):
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P(A) - P2  ° P6 + P1  * P7

S(N ) +A X((XA AK) (VA+ x)"" (AA B "(B + VA )  + (A + 2 ( A EB

-0.11.

and similarly,

P(B) = P3 + P2 . P5 + P S P8

2X 8__ + (VA +B ( AA (B
A 8' \XA + 2"/\B + k XA + 2B/ )A B

= 0.89

where A = rAPA and X B.= rBPB
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V. SUGGESTED FUTURE WORK

Models investigated in this paper include simple stochastic models

and a multiple duel model using the theory of continuous-time Markov

chains. The standard case was unlimited time, unlimited ammunition, and

a fixed kill probability. Models in which both time and ammunition are

limited would be desirable. Numerous extensions and modifications of

the fundamental-duel can be further studied as follows [Ref. 4]:

CASE 1: One-Versus-One

(1) Variable Kill Probability - PA and PB are special functions of time

and round dependent kill probability.

(2) Duel with initial suprise - random initial suprise

(3) Fixed ammunition supply, etc.

CASE 2: Two-Versus-Two

(1) Several multiple:

i . A +--4 A-- B

and

where A and B are contestants.

(2) Round dependent kill probability, connection with Lanchester's
models.

4.
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However, these suggested models with more than two contestants may be

limited to simple situations because the uncoupling principle which is!I
used to solve the fundamental-duel is no longer applicable.

Consequently, we must consider each event as it occurs, as well as

all the possible interactions and conditional events that may occur

subsequently.

I4.
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VI. FINAL REMARKS

Simple stochastic models for the fundamental-duel and the classical-

duel have been reviewed and analyzed by the graphical methods. For the

extension to multiple-duels two situations have been considered: 1)

discrete firing times, and 2) continuous firing times. When the firing

time is discrete, we are able to examine some duels in which strong

interactions occur by limiting our consideration to those situations in

which the time between rounds is constant. When the firing time is

continuous random variables, an expression for the probability of

-.il winning such a duel is derived by using the theory of continuous-time

Markov chains. Numerical examples for each model are presented. Still

there is much work left to be done in the future.
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